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Abstract—An important challenge in networked control sys-
tems is to ensure the confidentiality and integrity of the message
in order to secure the communication and prevent attackers or in-
truders from compromising the system. However, security mecha-
nisms may jeopardize the temporal behavior of the network data
communication because of the computation and communication
overhead. In this paper, we study the effect of adding Hash Based
Message Authentication (HMAC) to a time-triggered networked
control system. Time Triggered Architectures (TTAs) provide a
deterministic and predictable timing behavior that is used to
ensure safety, reliability and fault tolerance properties. The paper
analyzes the computation and communication overhead of adding
HMAC and the impact on the performance of the time-triggered
network. Experimental validation and performance evaluation
results using a TTEthernet network are also presented.
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I. INTRODUCTION

A system’s inability to provide its specified services in
the domain of safety-critical control applications such as by-
wire systems in automotive systems can threaten human lives.
For those ultra-dependable systems, the failure rates for those
systems should be in the order of 10−9 failures/hour [1].
Cyber-Physical Systems require distributed architectures to
support safety critical real-time control. For such systems,
Time-Triggered Architectures (TTA) offer signficant advan-
tages in terms of safety, reliability, and fault tolerance [2].

TTA provides a framework to design distributed, embed-
ded, and real-time systems ensuring high-dependability. TTA
provides mechanisms to determine precise timing and helps to
engineer fault-tolerance systems for both control software and
networked data communications [3]. Time-triggered networks
are beneficial in many Cyber-Physical System (CPS) appli-
cations including safety-critical systems, especially in-vehicle
networks (e.g. TTEthernet), by managing the complexity of
fault-tolerance and analytic dependability models and ensuring
highly reliable and deterministic systems [3].

TTA systems have focused on safety, reliability and fault-
tolerance properties. Another important property is to ensure
communication security [4, 5]. Providing mechanisms to en-
able secure communications is important to prevent actions
by attackers or intruders. Adding security mechanisms may

incur significant overhead and jeopardize the network data
communication in such highly dependable timing systems.

In this paper, in order to provide secure communication, an
authentication mechanism based on Hash Based Message Au-
thentication (HMAC) for communication is implemented and
evaluated in time-triggered network. The paper analyzes the
computation and communication overhead of adding HMAC
and the impact on the performance of the time-triggered
network. A comprehensive evaluation of the computational and
network overhead due to message authentication is also pre-
sented. Our results can be used for evaluating the performance
impact of security mechanisms, and thus, for design of secure
time-triggered networked control systems.

The paper is organized as follows: Section I presents
the introduction and related work; Section II describes the
problem; Section III introduces the model by describing the
network topology and the end nodes security. It also presents
the results for the computation overhead; Section IV presents
the theoretical analysis for the network communications. Sec-
tion V presents the results for the communication overhead;
Section VI concludes this work.

A. Related Work

In [6], an experiment was conducted to evaluate the
fragility of the underlying system structure of a modern
automobile system. The paper shows how an attacker is able
to infiltrate virtually any Electronic Control Unit (ECU). This
can leverage the ability to completely circumvent a broad
array of safety critical systems, and manipulate and control
the automotive functions by ignoring the driver’s input. In [7],
the National Highway Traffic Safety Administration (NHTSA)
reported some cases about infiltration at car’s control systems
and install malware remotely, using Bluetooth devices and
CD. Such vulnerabilities highlight the importance in securing
messages in vehicular networks.

As the software complexity increases, mainly due to info-
tainment (information-based media content or programming),
it is almost impossible to avoid security flaws. Drive-by-wire
systems can be developed based on time-triggered architectures
such as TTEthernet [8]. Security threats relevant to TTEthernet
are discussed and classified in 3 main categories: location,
cryptographic knowledge, and operational, in [9].



In [10], a study of current and future bus systems is
presented with respect to their security features. The paper
states that “a fundamental step to improve automotive bus
communication security is the encryption of all vehicular
data transmission”. A secure automotive communication based
on modern cryptographic mechanisms is proposed, however,
the performance impact of such security mechanisms is not
evaluated.

II. PROBLEM

The problem addressed in this paper is to evaluate the per-
formance impact of adding an authentication mechanism that
ensures secure communications in a time-triggered networked
control system and analyze how that extra information can
jeopardize the computational and network performance. The
example is based on an automotive communication system
described in [11]. The bus communication system used is
TTEthernet1. The system is composed by 3 Electronic Control
Units (ECUs), 1 TTEthernet switch, and 1 real-time target
computer which is used to simulate the vehicle dynamics.

The first goal of the paper is to measure the computational
overhead due to HMAC. The implemented method guarantees
that the messages are coming from an authenticated node.
Every message in the network bus can be authenticated at
every node. The entity authentication of sender’s message can
be verified at the receiver’s end and if the sender’s message is
not authenticated the receiver node will discard the message
(Section III). The second goal is to measure the network
overhead on the bus communications (Sections IV and V).

III. MODEL

As mentioned before, the considered experiment platform
comprises of a network architecture based on a TTA net-
work. This network allows synchronization among local node’s
clocks in a centralized way. The nodes are connected through
a central switch via bidirectional communication links. Each
node communicates with the other nodes by sending messages
to the switch, which then relays the messages to the respective
receiving nodes.

In TTA systems, events occur at a predefined time with
a precision at the microsecond level. The system provides an
off-line scheduling tool that statically creates the bus commu-
nication schedule table. This table specifies when messages
(e.g. time-trigger (TT) or best effort (BE) messages) are
transmitted by which node and who will receive the message.
This feature ensures that the network gives priority to TT
messages without collisions. This approach ensures predictable
deterministic behavior, where messages that are not delivered
can be easily detected.

A. Network Topology

The ECUs are self-contained units that include a processor
with memory, a real time operating system based on RTLinux
and Ubuntu (Linux kernel 2.6.24-24-rt) and the respective
networking devices drivers to enable time trigger communica-
tions [11]. The network is a star topology (Figure 1). All the
software developed is running at the kernel space managed

1http://www.tttech.com/technologies/ttethernet/

by RTLinux scheduler, guaranteeing real time execution. In
conjunction with the TTA system scheduler, for every cy-
cle, the created tasks repeat the same schedule enabling the
nodes to communicate in a deterministic way. Representative
parameters used for the network, such as the cycle or base
period, channels bandwidth, clock synchronization cycle, and
synchronization precision, can be found in [11].

Fig. 1. Network Topology - Star Configuration

B. End Nodes Security

The communication between the nodes can be secured
by ensuring that the message integrity and authenticity are
not compromised. The nodes should be authenticated and
the integrity of the messages of the sender’s node should
be maintained. The messages should not be tampered, that
is, an attacker should not be able to modify the messages
remotely and the receiver node should only accept messages
from authenticated nodes, discarding the other messages.

The technique implemented to authenticate the mes-
sages relies on a keyed-hash message authentication code
(HMAC [12]). The idea is to generate a tag for the respective
message, and then, the tag is appended and transmitted with
the original message (Figure 1).

C. HMAC

HMAC generates a tag by combining a cryptographic hash
function with a secret cryptographic key. The cryptographic
hash-functions should be one-way and collision resistant. It
is computationally unfeasible to find a message which cor-
responds to a given message digest, or to find two different
messages which produce the same message digest. Any change
to a message in transit will, with very high probability, result in
a different message digest, and the signature will fail to verify.
The strength of the HMAC depends upon the cryptographic
strength of the underlying hash function, the size of its hash
output, and on the size and quality of the key [12].

In this paper, three types of cryptographic hash functions
are implemented:
SHA-1: a 160-bit hash function;
SHA-2: SHA-256 hash function with 32-bit words;
SHA-3: Keccak hash function that supports the same hash
lengths as SHA-2, but its internal structure is significantly
different from the rest of the SHA family [13].



For all the hash functions described above, a secret cryp-
tographic key with 64 bytes is used. The unique tag message
authentication code generated by the hash-algorithms simulta-
neously verify the date integrity and the authentication of a
message. The same key is present in the sender and receiver
nodes.

Figure 2 shows the message authentication and validation
schematic. The process is outlined below:

• the sender node generates a tag for the desired mes-
sage to transmit (hash algorithms used);

• the message is appended with the tag and the combi-
nation is transmitted to the receiver node;

• the receiver node separates the message and the tag;

• then using the same key as the sender, the receiver
node regenerates the tag for the message received;

• the receiver then compares the regenerated tag with
the received tag.

Fig. 2. Message authentication and validation schematic

D. HMAC Performance

The HMAC model from Figure 2 is implemented at the
kernel level on the end nodes side in order to guarantee
deterministic and fast execution. Each node is an IBX-530W
box with an Intel Atom processor running at 1.6 GHz, 1 GB
of memory and 512 MB of cache.

Figure 3 presents the minimum, maximum and average
execution time for each hash function (SHA1, SHA2 and
SHA3). The results show the computational overhead to the
execution of the controller code described in [11] is small.

Fig. 3. HMAC Kernel Execution Time for different hash functions

The extra message tag overhead in bytes introduced by
enabling secure communications is dependent on the message

tag generated by the cryptographic hash-function used in
HMAC. In this case, for SHA-1 the message tag is 20 bytes
and for SHA-2 and SHA-3 the message tag is 32 bytes.

IV. ANALYSIS

Time-triggered systems use a time-division multiplexing
scheme (TDMA) to allocate each message a unique access
time within a periodic transmission schedule [2]. Based on
this technique, the need for an explicit collision-resolution
mechanism is eliminated. Each transmitter determines its turn
to access the network by checking a time reference. During the
design of the communication system the maximum number of
nodes that can participate in the TDMA scheduling should be
taken into account. Adding an extra node might disturb the
correct operation of the already integrated ones (Figure 4) [2].

Fig. 4. Maximum network delay at critical instant as a function of the number
of nodes [2]

A similar problem is expected to occur if nodes send
more information than the maximum allocated per slot. This
extra information might be necessary to ensure security during
communications. Therefore, it is important to reserve adequate
bandwidth to ensure schedulability. This section presents the
theoretical analysis of the performance impact on the maxi-
mum number of frames by incorporating a tag that changes
the frame size.

A. TTEthernet TDMA

Figure 5 shows a typical TTA TDMA frame. It consists
of a base period (BP), minimum time between two action
times also called guard period (GP) and the frame or slot time
(Frametime).

The maximum number of frames (NFmax) allowed per BP
is the following:

NFmax = BP
(Frametime)+GP

where, Frametime =
Packetsize

Transmissionrate

For all the theoretical and practical results a 100 Mbits/s
TTEthernet switch is used. The system defines a minimum
frame size of 60 bytes and a maximum frame size of 1514
bytes. It defines also a minimum transmission time between
two packets of 0.2 ms (GP = 0.2 ms). This minimum guard
period is used to guarantee that the physical switch has time
to route one frame size at its maximum size.



Fig. 5. TTA TDMA Frame

B. Theoretical Results

The base period (BP) is the same as the hyper period
from [11], BP = 10 ms. The BP is selected to ensure, that
all the control units will work at the designed and desired
rate with the proposed secure mechanism implemented. The
maximum packet size used in [11] was 60 bytes. As mentioned
in Section III the overhead on the frame size due to the
generated hash tag is 20 or 32 bytes.

Table I shows the theoretical results for NFmax and
Frametime with BP = 10 ms and changing the frame size
from 60 to 80 bytes. It is also assumed that communications
are perfect and fast, i.e., GP = 0. The table also shows the
theoretical results for NFmax and Frametime with BP = 10
ms and the suggested and defined TTEthernet guard period
(GP = 0.2 ms).

TABLE I. THEORETICAL RESULTS [@BP = 10 MS]

GP = 0 GP = 0.2 ms
60 bytes 80 bytes 60 bytes 80 bytes

NFmax 208333 156250 48 48
Frametime (ms) 0.0048 0.0064 0.2048 0.2064

Figure 6 shows the expected impact for NFmax per BP by
changing the frame size from 60 to 1514 bytes. Figure 7 shows
the expected impact for Frametime per BP by changing again
the frame size from 60 to 1514 bytes.

Fig. 6. NFmax vs Packet Size (bytes) with BP = 10 ms and GP = 0.2 ms

Fig. 7. Frametime (ms) vs Packet Size (bytes) with BP = 10 ms and GP
= 0.2 ms

C. Comments

As it can be seen from Table I, by adding a guard period,
the maximum number of frames per BP reduces drastically.
As an example, for the selected guard period and using the
message tag overhead introduced by using SHA-1, there is
no impact (in theory) on the maximum number of frames by
changing the packet size from 60 to 80 bytes (20 bytes message
tag overhead).

V. EXPERIMENTS

This section presents the experimental analysis of the per-
formance impact for the maximum number of frames per BP
by changing the amount of data transmitted. For all conducted
tests and to better understand the measured results, only two
end nodes are used. The results would be the same if all the
4 nodes presented in Section II are included.

A. Physical Measurement Setup

The block diagram for the physical setup is depicted in
Figure 8. The goal is to measure the time that a packet takes
to travel from one end node to the other through a normal
network channel. It is desired to measure this timing with as
small interference as possible during packet transmission. With
this in mind, it is not feasible to add extra code on the end node
side because this will interfere with the real time execution.
The solution relies on ”sniffing” the packets on the central
switch.

Fig. 8. Block Diagram for the Physical Setup

The central switch is not configured to broadcast the
packets to all ports. In order to monitor the packets during
communications, it is necessary to connect a secondary switch



that allows the connection of a packet analyzer (e.g. Wire-
shark2). Figure 9 shows the block diagram for the measurement
setup. The additional switch (WS) introduces a small delay in
the packets transmission time but this delay is consistent and
deterministic, as it can be seen in Table II.

Fig. 9. Block Diagram for the Measurement Physical Setup: (a) Packet
Arrival at the Central Switch (b) Packet Transmission at the Central Switch

The central switch is the master node of the TDMA
scheduler. It sends to all nodes a sync beacon at a predefined
and deterministic time in a dedicated channel (channel 4043).
This is the reference packet time used for all measurements.
Then the packet arrival time (Tx) and the packet transmission
time (Rx) at the switch is measured. With these measurements
in conjunction with the sync beacon3 packet timing, it is
possible to infer the packet transmission time from the end
node to the switch.

B. Experimental Results

Wireshark is used as the packet analyzer. On the software,
it is possible to see the sync beacon packets, the packet arrival
and packet transmission timings. All these measurements are
related with the central switch. Four tests were conducted in
order to evaluate the switch performance at its minimum and
maximum frame size. For all the tests, data is collected for 5
minutes. The tests are the following:

• measure the packet arrival time (Tx) for the minimum
TTA frame size (60 bytes),

• measure the packet transmission time (Rx) for the
minimum TTA frame size (60 bytes),

• measure the packet arrival time (Tx) for the maximum
TTA frame size (1514 bytes),

• measure the packet transmission time (Rx) for the
maximum TTA frame size (1514 bytes).

Table II shows the values of the performed tests (due to
network communication overhead). Based on this data, it is
possible to compute the switch performance. For that, it is
necessary to compute the time difference (Diff) between the
time that the switch received the packet (Tx) with the time that
the switch forward the packet (Rx) to the respective channel.

Switch Performance: Diff = Tx−Rx

2http://www.wireshark.org/
3Sync Beacons are frames used as time reference

TABLE II. CENTRAL SWITCH PERFORMANCE MEASURED VALUES

60 bytes 1514 bytes
Min Avg Max Min Avg Max

Tx (ms) 0 0.0080 0.1150 0.1100 0.2220 0.3470
Rx (ms) 0.2740 0.3860 0.6730 0.4940 0.5940 0.8260
Diff (ms) 0.2740 0.3780 0.5580 0.3840 0.3720 0.4790

The average value for Diff at 60 bytes (0.378 ms) and 1514
bytes (0.372 ms) is approximately the same and it reflects
the consistency and determinism of the central switch in
forwarding different frame sizes. In theory this Diff should be
the same as the guard period (0.2 ms) mentioned in Section IV.
One of the reasons that might contribute for the extra overhead
is the addition of the extra switch to sniff the communication
channel. It is important to mention that all the values from
Table II include this overhead. The additional switch takes
different times to forward the packets, that are also dependent
on the size of the packets. For the remaining calculations
a boundary of 0.1 ms is assumed for the additional switch
overhead (SO).

Based on the collected data, it is also possible to get the
time that the transmitted packet takes from one end node to the
central switch. Once again, this is possible to compute because
all end nodes are in sync with the central switch by the sync
beacon packet. From Table II, the average transmission time
(Tx) for 60 bytes is 0.008 ms and 0.222 ms for 1514 bytes.
As expected, the end node takes more time to transmit more
data. This is due to the time that the network device drivers at
the end node take to make the data available to transmit. Once
again, the transmission is not deterministic, it varies with the
packet size.

The maximum transmission time (MaxTT ) can be calcu-
lated with the following equation:

MaxTT = (2 ∗ (Frametime − SO) +Diff)

where, Frametime is the time that it takes for the message
to go from the end node to the central switch and Diff the
time that the central switch takes to forward the message. To
simplify the calculations, it is assumed that the network device
drivers at the receiver end node take the same time as the
network drivers at the transmitter node.

As an example, from Table II, taking the maximum trans-
mission time for 60 bytes (0.115 ms) and with Diff equal to
the guard period (0.2 ms), the following MaxTT is obtained:

MaxTT = (2 ∗ (0.115− 0.1)) + 0.2 = 0.23ms

Using SHA-1 message tag overhead and using the equation
mentioned above (MaxTT ), it is possible to evaluate the
performance impact on the maximum number of frames per
BP by adding extra bytes to ensure secure communications.
Table III shows the performance impact values.

TABLE III. PERFORMANCE IMPACT RESULTS

Theoretical Measured
60 bytes 80 bytes 60 bytes 80 bytes

NFmax 48 48 43 33
Frametime (ms) 0.0048 0.0064 0.1150 0.1500
MaxTT (ms) 0.2096 0.2128 0.2300 0.3000

Note that the Frametime for the Measured results from
Table III already has the additional switch overhead subtracted.



C. Comments

There is a significant drop on the maximum number of
frames per BP between the theoretical and measured values.
The main reason why is because the theoretical values do not
include the time that the device drivers from the end node
side take to make available the frame to transmit. The end
node network device driver’s time is not deterministic and it
depends on several factors such as the type of operating system
running on it and the amount of data desired to transmit.

However, for the measured values for the application
example, there is a small impact on the maximum number
of frames per BP by increasing the packet size from 60 to
80 bytes (in this case using SHA-1 message tag). The time
that it takes to transmit a frame with or without the generated
hash tag is approximately the same and it does not affect the
real-time execution of the application example.

VI. CONCLUSION

Time-triggered networked control systems enable safe,
reliable and fault-tolerant network communications. However,
it is also important to incorporate secure communications but
security mechanisms can affect the overall system stability.
Herewith, it is important to evaluate impact performance of
secure messages in existing network communications.

In this paper, an authentication method based on a keyed-
hashed authentication code (HMAC) is used. The proposed
security mechanism enables secure communications between
several nodes. The impact on the performance of the bus com-
munication by adding this level of security on the messages
is analyzed. The HMAC execution time does not affect the
overall system performance. The algorithm is implemented at
an operating system kernel level and the execution time is
negligible for the nodes that are authenticating the messages.

On the network side, there is a small impact on the
maximum number of frames per base period (BP) by changing
the number of bytes transmitted. However, despite the need
for adding extra bytes in the transmitted packet, the time
that it takes to transmit a frame with or without encryption
is approximately the same and it does not affect real-time
execution.
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